MakeItFrom.com
Menu (ESC)

EN 1.4104 Stainless Steel vs. R58150 Titanium

EN 1.4104 stainless steel belongs to the iron alloys classification, while R58150 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4104 stainless steel and the bottom bar is R58150 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 11 to 23
13
Fatigue Strength, MPa 230 to 310
330
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
52
Shear Strength, MPa 400 to 450
470
Tensile Strength: Ultimate (UTS), MPa 630 to 750
770
Tensile Strength: Yield (Proof), MPa 350 to 560
550

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 860
320
Melting Completion (Liquidus), °C 1440
1760
Melting Onset (Solidus), °C 1390
1700
Specific Heat Capacity, J/kg-K 480
500
Thermal Expansion, µm/m-K 10
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
48
Density, g/cm3 7.7
5.4
Embodied Carbon, kg CO2/kg material 2.2
31
Embodied Energy, MJ/kg 30
480
Embodied Water, L/kg 120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 77 to 120
94
Resilience: Unit (Modulus of Resilience), kJ/m3 310 to 800
1110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 23 to 27
40
Strength to Weight: Bending, points 21 to 24
35
Thermal Shock Resistance, points 22 to 27
48

Alloy Composition

Carbon (C), % 0.1 to 0.17
0 to 0.1
Chromium (Cr), % 15.5 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 78.8 to 84.1
0 to 0.1
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.2 to 0.6
14 to 16
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
83.5 to 86