MakeItFrom.com
Menu (ESC)

EN 1.4107 Stainless Steel vs. N08020 Stainless Steel

Both EN 1.4107 stainless steel and N08020 stainless steel are iron alloys. They have 51% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4107 stainless steel and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 18 to 21
15 to 34
Fatigue Strength, MPa 260 to 350
210 to 240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Tensile Strength: Ultimate (UTS), MPa 620 to 700
610 to 620
Tensile Strength: Yield (Proof), MPa 400 to 570
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 390
490
Maximum Temperature: Mechanical, °C 740
1100
Melting Completion (Liquidus), °C 1450
1410
Melting Onset (Solidus), °C 1410
1360
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 27
12
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
38
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.1
6.6
Embodied Energy, MJ/kg 30
92
Embodied Water, L/kg 100
220

Common Calculations

PREN (Pitting Resistance) 13
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 420 to 840
180 to 440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22 to 25
21
Strength to Weight: Bending, points 21 to 22
20
Thermal Diffusivity, mm2/s 7.2
3.2
Thermal Shock Resistance, points 22 to 25
15

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.070
Chromium (Cr), % 11.5 to 12.5
19 to 21
Copper (Cu), % 0 to 0.3
3.0 to 4.0
Iron (Fe), % 83.8 to 87.2
29.9 to 44
Manganese (Mn), % 0.5 to 0.8
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
2.0 to 3.0
Nickel (Ni), % 0.8 to 1.5
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.035
Vanadium (V), % 0 to 0.080
0

Comparable Variants