MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. AISI 316 Stainless Steel

Both EN 1.4110 stainless steel and AISI 316 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is AISI 316 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 14
8.0 to 55
Fatigue Strength, MPa 250 to 730
210 to 430
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 470 to 1030
350 to 690
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
520 to 1180
Tensile Strength: Yield (Proof), MPa 430 to 1330
230 to 850

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 390
410
Maximum Temperature: Mechanical, °C 790
590
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 30
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.3
3.9
Embodied Energy, MJ/kg 33
53
Embodied Water, L/kg 110
150

Common Calculations

PREN (Pitting Resistance) 16
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
85 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
130 to 1820
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28 to 62
18 to 41
Strength to Weight: Bending, points 24 to 41
18 to 31
Thermal Diffusivity, mm2/s 8.1
4.1
Thermal Shock Resistance, points 27 to 60
11 to 26

Alloy Composition

Carbon (C), % 0.48 to 0.6
0 to 0.080
Chromium (Cr), % 13 to 15
16 to 18
Iron (Fe), % 81.4 to 86
62 to 72
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0.5 to 0.8
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.015
0 to 0.030
Vanadium (V), % 0 to 0.15
0

Comparable Variants