MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. C26200 Brass

EN 1.4110 stainless steel belongs to the iron alloys classification, while C26200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is C26200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
3.0 to 180
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Shear Strength, MPa 470 to 1030
230 to 390
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
330 to 770
Tensile Strength: Yield (Proof), MPa 430 to 1330
110 to 490

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 790
140
Melting Completion (Liquidus), °C 1440
950
Melting Onset (Solidus), °C 1400
920
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
31

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
25
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 33
45
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
19 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
62 to 1110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 62
11 to 26
Strength to Weight: Bending, points 24 to 41
13 to 23
Thermal Diffusivity, mm2/s 8.1
38
Thermal Shock Resistance, points 27 to 60
11 to 26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
67 to 70
Iron (Fe), % 81.4 to 86
0 to 0.050
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 0.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
29.6 to 33
Residuals, % 0
0 to 0.3