MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. C66700 Brass

EN 1.4110 stainless steel belongs to the iron alloys classification, while C66700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 14
2.0 to 58
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
41
Shear Strength, MPa 470 to 1030
250 to 530
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
340 to 690
Tensile Strength: Yield (Proof), MPa 430 to 1330
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 790
140
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1400
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 30
97
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
17
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
19

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
25
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.3
2.7
Embodied Energy, MJ/kg 33
45
Embodied Water, L/kg 110
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
49 to 1900
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 62
11 to 23
Strength to Weight: Bending, points 24 to 41
13 to 21
Thermal Diffusivity, mm2/s 8.1
30
Thermal Shock Resistance, points 27 to 60
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 81.4 to 86
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0.8 to 1.5
Molybdenum (Mo), % 0.5 to 0.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5