MakeItFrom.com
Menu (ESC)

EN 1.4110 Stainless Steel vs. C85800 Brass

EN 1.4110 stainless steel belongs to the iron alloys classification, while C85800 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4110 stainless steel and the bottom bar is C85800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 11 to 14
15
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 770 to 1720
380
Tensile Strength: Yield (Proof), MPa 430 to 1330
210

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 790
120
Melting Completion (Liquidus), °C 1440
900
Melting Onset (Solidus), °C 1400
870
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 30
84
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
20
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
22

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
24
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 33
47
Embodied Water, L/kg 110
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90 to 180
48
Resilience: Unit (Modulus of Resilience), kJ/m3 480 to 4550
210
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28 to 62
13
Strength to Weight: Bending, points 24 to 41
15
Thermal Diffusivity, mm2/s 8.1
27
Thermal Shock Resistance, points 27 to 60
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.55
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0.48 to 0.6
0
Chromium (Cr), % 13 to 15
0
Copper (Cu), % 0
57 to 69
Iron (Fe), % 81.4 to 86
0 to 0.5
Lead (Pb), % 0
0 to 1.5
Manganese (Mn), % 0 to 1.0
0 to 0.25
Molybdenum (Mo), % 0.5 to 0.8
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
0 to 1.5
Vanadium (V), % 0 to 0.15
0
Zinc (Zn), % 0
31 to 41
Residuals, % 0
0 to 1.3