MakeItFrom.com
Menu (ESC)

EN 1.4150 Stainless Steel vs. Nickel 718

EN 1.4150 stainless steel belongs to the iron alloys classification, while nickel 718 belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4150 stainless steel and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
12 to 50
Fatigue Strength, MPa 270
460 to 760
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
75
Shear Strength, MPa 460
660 to 950
Tensile Strength: Ultimate (UTS), MPa 730
930 to 1530
Tensile Strength: Yield (Proof), MPa 430
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Mechanical, °C 840
980
Melting Completion (Liquidus), °C 1420
1340
Melting Onset (Solidus), °C 1380
1260
Specific Heat Capacity, J/kg-K 490
450
Thermal Conductivity, W/m-K 23
11
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
75
Density, g/cm3 7.6
8.3
Embodied Carbon, kg CO2/kg material 2.8
13
Embodied Energy, MJ/kg 42
190
Embodied Water, L/kg 120
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 470
660 to 4560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 27
31 to 51
Strength to Weight: Bending, points 24
25 to 35
Thermal Diffusivity, mm2/s 6.2
3.0
Thermal Shock Resistance, points 27
27 to 44

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0.45 to 0.6
0 to 0.080
Chromium (Cr), % 15 to 16.5
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 79 to 82.8
11.1 to 24.6
Manganese (Mn), % 0 to 0.8
0 to 0.35
Molybdenum (Mo), % 0.2 to 0.4
2.8 to 3.3
Nickel (Ni), % 0 to 0.4
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.030
0 to 0.015
Silicon (Si), % 1.3 to 1.7
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2
Vanadium (V), % 0.2 to 0.4
0