MakeItFrom.com
Menu (ESC)

EN 1.4150 Stainless Steel vs. S20432 Stainless Steel

Both EN 1.4150 stainless steel and S20432 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4150 stainless steel and the bottom bar is S20432 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
45
Fatigue Strength, MPa 270
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 460
400
Tensile Strength: Ultimate (UTS), MPa 730
580
Tensile Strength: Yield (Proof), MPa 430
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 390
410
Maximum Temperature: Mechanical, °C 840
900
Melting Completion (Liquidus), °C 1420
1410
Melting Onset (Solidus), °C 1380
1370
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 23
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
13
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 42
38
Embodied Water, L/kg 120
140

Common Calculations

PREN (Pitting Resistance) 19
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
210
Resilience: Unit (Modulus of Resilience), kJ/m3 470
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
21
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 6.2
4.0
Thermal Shock Resistance, points 27
13

Alloy Composition

Carbon (C), % 0.45 to 0.6
0 to 0.080
Chromium (Cr), % 15 to 16.5
17 to 18
Copper (Cu), % 0
2.0 to 3.0
Iron (Fe), % 79 to 82.8
66.7 to 74
Manganese (Mn), % 0 to 0.8
3.0 to 5.0
Molybdenum (Mo), % 0.2 to 0.4
0
Nickel (Ni), % 0 to 0.4
4.0 to 6.0
Nitrogen (N), % 0.050 to 0.2
0.050 to 0.2
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 1.3 to 1.7
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Vanadium (V), % 0.2 to 0.4
0