MakeItFrom.com
Menu (ESC)

EN 1.4303 Stainless Steel vs. ASTM A387 Grade 91 Class 2

Both EN 1.4303 stainless steel and ASTM A387 grade 91 class 2 are iron alloys. They have 78% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4303 stainless steel and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 13 to 49
20
Fatigue Strength, MPa 220 to 320
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 420 to 540
420
Tensile Strength: Ultimate (UTS), MPa 590 to 900
670
Tensile Strength: Yield (Proof), MPa 230 to 560
470

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Mechanical, °C 940
600
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 17
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 46
37
Embodied Water, L/kg 150
88

Common Calculations

PREN (Pitting Resistance) 19
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 230
120
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 32
24
Strength to Weight: Bending, points 20 to 26
22
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 13 to 20
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0 to 0.060
0.080 to 0.12
Chromium (Cr), % 17 to 19
8.0 to 9.5
Iron (Fe), % 64.8 to 72
87.3 to 90.3
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 11 to 13
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0 to 0.1
0.030 to 0.070
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0.2 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010