MakeItFrom.com
Menu (ESC)

EN 1.4303 Stainless Steel vs. N07716 Nickel

EN 1.4303 stainless steel belongs to the iron alloys classification, while N07716 nickel belongs to the nickel alloys. They have a modest 36% of their average alloy composition in common, which, by itself, doesn't mean much. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4303 stainless steel and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 13 to 49
34
Fatigue Strength, MPa 220 to 320
690
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
78
Shear Strength, MPa 420 to 540
580
Tensile Strength: Ultimate (UTS), MPa 590 to 900
860
Tensile Strength: Yield (Proof), MPa 230 to 560
350

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 940
980
Melting Completion (Liquidus), °C 1420
1480
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 17
75
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.2
13
Embodied Energy, MJ/kg 46
190
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 230
240
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
300
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21 to 32
28
Strength to Weight: Bending, points 20 to 26
24
Thermal Diffusivity, mm2/s 4.0
2.8
Thermal Shock Resistance, points 13 to 20
24

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 17 to 19
19 to 22
Iron (Fe), % 64.8 to 72
0 to 11.3
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 11 to 13
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
1.0 to 1.6