MakeItFrom.com
Menu (ESC)

EN 1.4303 Stainless Steel vs. S40910 Stainless Steel

Both EN 1.4303 stainless steel and S40910 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4303 stainless steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 13 to 49
23
Fatigue Strength, MPa 220 to 320
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 420 to 540
270
Tensile Strength: Ultimate (UTS), MPa 590 to 900
430
Tensile Strength: Yield (Proof), MPa 230 to 560
190

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
440
Maximum Temperature: Mechanical, °C 940
710
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 17
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.0
Embodied Energy, MJ/kg 46
28
Embodied Water, L/kg 150
94

Common Calculations

PREN (Pitting Resistance) 19
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 230
80
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
94
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 32
16
Strength to Weight: Bending, points 20 to 26
16
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 13 to 20
16

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.030
Chromium (Cr), % 17 to 19
10.5 to 11.7
Iron (Fe), % 64.8 to 72
85 to 89.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 11 to 13
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0 to 0.5