MakeItFrom.com
Menu (ESC)

EN 1.4305 Stainless Steel vs. Grade 33 Titanium

EN 1.4305 stainless steel belongs to the iron alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4305 stainless steel and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 40
23
Fatigue Strength, MPa 190 to 330
250
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
41
Shear Strength, MPa 420 to 550
240
Tensile Strength: Ultimate (UTS), MPa 610 to 900
390
Tensile Strength: Yield (Proof), MPa 220 to 570
350

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 930
320
Melting Completion (Liquidus), °C 1420
1660
Melting Onset (Solidus), °C 1380
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 15
55
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.0
33
Embodied Energy, MJ/kg 42
530
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
86
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 830
590
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22 to 32
24
Strength to Weight: Bending, points 20 to 27
26
Thermal Diffusivity, mm2/s 4.0
8.7
Thermal Shock Resistance, points 14 to 20
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 19
0.1 to 0.2
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.4 to 74.9
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.0 to 10
0.35 to 0.55
Nitrogen (N), % 0 to 0.1
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0.15 to 0.35
0
Titanium (Ti), % 0
98.1 to 99.52
Residuals, % 0
0 to 0.4