MakeItFrom.com
Menu (ESC)

EN 1.4307 Stainless Steel vs. S40945 Stainless Steel

Both EN 1.4307 stainless steel and S40945 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4307 stainless steel and the bottom bar is S40945 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 270
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 46
25
Fatigue Strength, MPa 190 to 320
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 410 to 550
270
Tensile Strength: Ultimate (UTS), MPa 590 to 900
430
Tensile Strength: Yield (Proof), MPa 200 to 570
230

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 940
710
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 15
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.2
Embodied Energy, MJ/kg 43
31
Embodied Water, L/kg 140
94

Common Calculations

PREN (Pitting Resistance) 19
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 210
89
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 810
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 32
15
Strength to Weight: Bending, points 20 to 27
16
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 13 to 20
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 19.5
10.5 to 11.7
Iron (Fe), % 66.8 to 74.5
85.1 to 89.3
Manganese (Mn), % 0 to 2.0
0 to 1.0
Nickel (Ni), % 8.0 to 10.5
0 to 0.5
Niobium (Nb), % 0
0.18 to 0.4
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0.050 to 0.2