MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. 515.0 Aluminum

EN 1.4310 stainless steel belongs to the iron alloys classification, while 515.0 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is 515.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 14 to 45
10
Fatigue Strength, MPa 240 to 330
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 510 to 550
190
Tensile Strength: Ultimate (UTS), MPa 730 to 900
280

Thermal Properties

Latent Heat of Fusion, J/g 290
470
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1420
620
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 18
23

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.9
8.4
Embodied Energy, MJ/kg 42
150
Embodied Water, L/kg 140
1120

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
52
Strength to Weight: Axial, points 26 to 32
30
Strength to Weight: Bending, points 23 to 27
36
Thermal Shock Resistance, points 15 to 18
13

Alloy Composition

Aluminum (Al), % 0
93.6 to 96.6
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 16 to 19
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 66.4 to 78
0 to 1.3
Magnesium (Mg), % 0
2.5 to 4.0
Manganese (Mn), % 0 to 2.0
0.4 to 0.6
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 6.0 to 9.5
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 2.0
0.5 to 10
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15