MakeItFrom.com
Menu (ESC)

EN 1.4310 Stainless Steel vs. C99300 Copper

EN 1.4310 stainless steel belongs to the iron alloys classification, while C99300 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4310 stainless steel and the bottom bar is C99300 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 270
200
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 45
2.0
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
46
Tensile Strength: Ultimate (UTS), MPa 730 to 900
660
Tensile Strength: Yield (Proof), MPa 260 to 570
380

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 910
250
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
1070
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 15
43
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
35
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.9
4.5
Embodied Energy, MJ/kg 42
70
Embodied Water, L/kg 140
400

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 260
11
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 830
590
Stiffness to Weight: Axial, points 14
8.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 26 to 32
22
Strength to Weight: Bending, points 23 to 27
20
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 15 to 18
22

Alloy Composition

Aluminum (Al), % 0
10.7 to 11.5
Carbon (C), % 0.050 to 0.15
0
Chromium (Cr), % 16 to 19
0
Cobalt (Co), % 0
1.0 to 2.0
Copper (Cu), % 0
68.6 to 74.4
Iron (Fe), % 66.4 to 78
0.4 to 1.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 6.0 to 9.5
13.5 to 16.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 2.0
0 to 0.020
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.050
Residuals, % 0
0 to 0.3