MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. AWS ER80S-Ni1

Both EN 1.4313 stainless steel and AWS ER80S-Ni1 are iron alloys. They have 84% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 12 to 17
27
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
630
Tensile Strength: Yield (Proof), MPa 580 to 910
530

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
41
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.7
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.6
Embodied Energy, MJ/kg 34
21
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
160
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
740
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27 to 36
22
Strength to Weight: Bending, points 23 to 28
21
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 27 to 36
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.050
0 to 0.12
Chromium (Cr), % 12 to 14
0 to 0.15
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 78.5 to 84.2
95.3 to 98.8
Manganese (Mn), % 0 to 1.5
0 to 1.3
Molybdenum (Mo), % 0.3 to 0.7
0 to 0.35
Nickel (Ni), % 3.5 to 4.5
0.8 to 1.1
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.7
0.4 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0
0 to 0.050
Residuals, % 0
0 to 0.5