MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. EN 1.8935 Steel

Both EN 1.4313 stainless steel and EN 1.8935 steel are iron alloys. They have 83% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is EN 1.8935 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 12 to 17
19
Fatigue Strength, MPa 340 to 510
330
Impact Strength: V-Notched Charpy, J 55 to 70
71
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 460 to 600
400
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
640
Tensile Strength: Yield (Proof), MPa 580 to 910
490

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 780
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
46
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.7
Embodied Energy, MJ/kg 34
24
Embodied Water, L/kg 110
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27 to 36
23
Strength to Weight: Bending, points 23 to 28
21
Thermal Diffusivity, mm2/s 6.7
12
Thermal Shock Resistance, points 27 to 36
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.050
0 to 0.2
Chromium (Cr), % 12 to 14
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 78.5 to 84.2
95.2 to 98.9
Manganese (Mn), % 0 to 1.5
1.1 to 1.7
Molybdenum (Mo), % 0.3 to 0.7
0 to 0.1
Nickel (Ni), % 3.5 to 4.5
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.020
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2