MakeItFrom.com
Menu (ESC)

EN 1.4317 Stainless Steel vs. C95600 Bronze

EN 1.4317 stainless steel belongs to the iron alloys classification, while C95600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4317 stainless steel and the bottom bar is C95600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
15
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 860
500
Tensile Strength: Yield (Proof), MPa 630
230

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 770
210
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
980
Specific Heat Capacity, J/kg-K 480
430
Thermal Conductivity, W/m-K 26
39
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.2
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.4
3.0
Embodied Energy, MJ/kg 33
50
Embodied Water, L/kg 110
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
60
Resilience: Unit (Modulus of Resilience), kJ/m3 1010
230
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31
17
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 7.0
11
Thermal Shock Resistance, points 30
18

Alloy Composition

Aluminum (Al), % 0
6.0 to 8.0
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 12 to 13.5
0
Copper (Cu), % 0
88 to 92.2
Iron (Fe), % 78.7 to 84.5
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.7
0
Nickel (Ni), % 3.5 to 5.0
0 to 0.25
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
1.8 to 3.2
Sulfur (S), % 0 to 0.025
0
Residuals, % 0
0 to 1.0