MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. C86300 Bronze

EN 1.4361 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
250
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 43
14
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 630
850
Tensile Strength: Yield (Proof), MPa 250
480

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 940
160
Melting Completion (Liquidus), °C 1370
920
Melting Onset (Solidus), °C 1330
890
Specific Heat Capacity, J/kg-K 490
420
Thermal Conductivity, W/m-K 14
35
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.0
Embodied Energy, MJ/kg 52
51
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
100
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 23
30
Strength to Weight: Bending, points 21
25
Thermal Diffusivity, mm2/s 3.7
11
Thermal Shock Resistance, points 15
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.0 to 7.5
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 58.7 to 65.8
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 16
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 3.7 to 4.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0