MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. 364.0 Aluminum

EN 1.4378 stainless steel belongs to the iron alloys classification, while 364.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 14 to 34
7.5
Fatigue Strength, MPa 340 to 550
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 510 to 680
200
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
300
Tensile Strength: Yield (Proof), MPa 430 to 970
160

Thermal Properties

Latent Heat of Fusion, J/g 290
520
Maximum Temperature: Mechanical, °C 910
190
Melting Completion (Liquidus), °C 1390
600
Melting Onset (Solidus), °C 1350
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 12
11
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 2.7
8.0
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 150
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
19
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 28 to 41
31
Strength to Weight: Bending, points 24 to 31
38
Thermal Shock Resistance, points 16 to 23
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0.25 to 0.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 61.2 to 69
0 to 1.5
Magnesium (Mg), % 0
0.2 to 0.4
Manganese (Mn), % 11.5 to 14.5
0 to 0.1
Nickel (Ni), % 2.3 to 3.7
0 to 0.15
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15