MakeItFrom.com
Menu (ESC)

EN 1.4410 Stainless Steel vs. C19010 Copper

EN 1.4410 stainless steel belongs to the iron alloys classification, while C19010 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4410 stainless steel and the bottom bar is C19010 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 24
2.4 to 22
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 81
43
Shear Strength, MPa 540
210 to 360
Tensile Strength: Ultimate (UTS), MPa 850
330 to 640
Tensile Strength: Yield (Proof), MPa 600
260 to 620

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1450
1060
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
260
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
48 to 63
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
48 to 63

Otherwise Unclassified Properties

Base Metal Price, % relative 20
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.0
2.7
Embodied Energy, MJ/kg 56
42
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
7.3 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 880
290 to 1680
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 30
10 to 20
Strength to Weight: Bending, points 26
12 to 18
Thermal Diffusivity, mm2/s 4.0
75
Thermal Shock Resistance, points 23
12 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
97.3 to 99.04
Iron (Fe), % 58.1 to 66.8
0
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 3.0 to 4.5
0
Nickel (Ni), % 6.0 to 8.0
0.8 to 1.8
Nitrogen (N), % 0.24 to 0.35
0
Phosphorus (P), % 0 to 0.035
0.010 to 0.050
Silicon (Si), % 0 to 1.0
0.15 to 0.35
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5