MakeItFrom.com
Menu (ESC)

EN 1.4415 Stainless Steel vs. ASTM A182 Grade F92

Both EN 1.4415 stainless steel and ASTM A182 grade F92 are iron alloys. They have 90% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is ASTM A182 grade F92.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17 to 20
22
Fatigue Strength, MPa 470 to 510
360
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 520 to 570
440
Tensile Strength: Ultimate (UTS), MPa 830 to 930
690
Tensile Strength: Yield (Proof), MPa 730 to 840
500

Thermal Properties

Latent Heat of Fusion, J/g 280
260
Maximum Temperature: Mechanical, °C 790
590
Melting Completion (Liquidus), °C 1460
1490
Melting Onset (Solidus), °C 1420
1450
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 19
26
Thermal Expansion, µm/m-K 9.9
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
10

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 51
40
Embodied Water, L/kg 120
89

Common Calculations

PREN (Pitting Resistance) 19
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1350 to 1790
650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 29 to 33
24
Strength to Weight: Bending, points 25 to 27
22
Thermal Diffusivity, mm2/s 5.1
6.9
Thermal Shock Resistance, points 30 to 34
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.030
0.070 to 0.13
Chromium (Cr), % 11.5 to 13.5
8.5 to 9.5
Iron (Fe), % 75.9 to 82.4
85.8 to 89.1
Manganese (Mn), % 0 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 1.5 to 2.5
0.3 to 0.6
Nickel (Ni), % 4.5 to 6.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0 to 0.010
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0.1 to 0.5
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010