MakeItFrom.com
Menu (ESC)

EN 1.4415 Stainless Steel vs. Grade Ti-Pd18 Titanium

EN 1.4415 stainless steel belongs to the iron alloys classification, while grade Ti-Pd18 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is grade Ti-Pd18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17 to 20
17
Fatigue Strength, MPa 470 to 510
350
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 830 to 930
710
Tensile Strength: Yield (Proof), MPa 730 to 840
540

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 790
330
Melting Completion (Liquidus), °C 1460
1640
Melting Onset (Solidus), °C 1420
1590
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 19
8.2
Thermal Expansion, µm/m-K 9.9
9.1

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.7

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 3.6
41
Embodied Energy, MJ/kg 51
670
Embodied Water, L/kg 120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1350 to 1790
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 29 to 33
44
Strength to Weight: Bending, points 25 to 27
39
Thermal Diffusivity, mm2/s 5.1
3.3
Thermal Shock Resistance, points 30 to 34
52

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 11.5 to 13.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 75.9 to 82.4
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 4.5 to 6.5
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.010
92.5 to 95.5
Vanadium (V), % 0.1 to 0.5
2.0 to 3.0
Residuals, % 0
0 to 0.4