MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. 5088 Aluminum

EN 1.4418 stainless steel belongs to the iron alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 16 to 20
29
Fatigue Strength, MPa 350 to 480
180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
25
Shear Strength, MPa 530 to 620
200
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
310
Tensile Strength: Yield (Proof), MPa 540 to 790
150

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 870
200
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
540
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 10
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
98

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 2.8
9.0
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
76
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 31 to 36
32
Strength to Weight: Bending, points 26 to 28
38
Thermal Diffusivity, mm2/s 4.0
51
Thermal Shock Resistance, points 31 to 36
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
92.4 to 94.8
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15 to 17
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 73.2 to 80.2
0.1 to 0.35
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 1.5
0.2 to 0.5
Molybdenum (Mo), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.2
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15