MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. C28000 Muntz Metal

EN 1.4418 stainless steel belongs to the iron alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 16 to 20
10 to 45
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Shear Strength, MPa 530 to 620
230 to 330
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
330 to 610
Tensile Strength: Yield (Proof), MPa 540 to 790
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1450
900
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
31

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
46
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31 to 36
11 to 21
Strength to Weight: Bending, points 26 to 28
13 to 20
Thermal Diffusivity, mm2/s 4.0
40
Thermal Shock Resistance, points 31 to 36
11 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 73.2 to 80.2
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3