MakeItFrom.com
Menu (ESC)

EN 1.4418 Stainless Steel vs. C61800 Bronze

EN 1.4418 stainless steel belongs to the iron alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4418 stainless steel and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16 to 20
26
Fatigue Strength, MPa 350 to 480
190
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
44
Shear Strength, MPa 530 to 620
310
Tensile Strength: Ultimate (UTS), MPa 860 to 1000
740
Tensile Strength: Yield (Proof), MPa 540 to 790
310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 870
220
Melting Completion (Liquidus), °C 1450
1050
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
64
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 39
52
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130 to 170
150
Resilience: Unit (Modulus of Resilience), kJ/m3 730 to 1590
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31 to 36
25
Strength to Weight: Bending, points 26 to 28
22
Thermal Diffusivity, mm2/s 4.0
18
Thermal Shock Resistance, points 31 to 36
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 11
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
86.9 to 91
Iron (Fe), % 73.2 to 80.2
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.8 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.7
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.020
Residuals, % 0
0 to 0.5