MakeItFrom.com
Menu (ESC)

EN 1.4439 Stainless Steel vs. S40920 Stainless Steel

Both EN 1.4439 stainless steel and S40920 stainless steel are iron alloys. They have 75% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4439 stainless steel and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
22
Fatigue Strength, MPa 270
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
75
Shear Strength, MPa 470
270
Tensile Strength: Ultimate (UTS), MPa 680
430
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
450
Maximum Temperature: Mechanical, °C 980
710
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 14
26
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
6.5
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.5
2.0
Embodied Energy, MJ/kg 61
28
Embodied Water, L/kg 160
94

Common Calculations

PREN (Pitting Resistance) 35
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
78
Resilience: Unit (Modulus of Resilience), kJ/m3 240
97
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 3.8
6.9
Thermal Shock Resistance, points 15
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 16.5 to 18.5
10.5 to 11.7
Iron (Fe), % 58.7 to 66.9
85.1 to 89.4
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 12.5 to 14.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.12 to 0.22
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.5