MakeItFrom.com
Menu (ESC)

EN 1.4458 Stainless Steel vs. C71640 Copper-nickel

EN 1.4458 stainless steel belongs to the iron alloys classification, while C71640 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4458 stainless steel and the bottom bar is C71640 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
52
Tensile Strength: Ultimate (UTS), MPa 510
490 to 630
Tensile Strength: Yield (Proof), MPa 190
190 to 460

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1420
1180
Melting Onset (Solidus), °C 1370
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 16
29
Thermal Expansion, µm/m-K 15
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
40
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 5.4
5.0
Embodied Energy, MJ/kg 75
73
Embodied Water, L/kg 200
280

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 89
130 to 750
Stiffness to Weight: Axial, points 14
8.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
15 to 20
Strength to Weight: Bending, points 18
16 to 18
Thermal Diffusivity, mm2/s 4.2
8.2
Thermal Shock Resistance, points 12
16 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 2.0
61.7 to 67.8
Iron (Fe), % 40.2 to 53
1.7 to 2.3
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
1.5 to 2.5
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 26 to 30
29 to 32
Nitrogen (N), % 0 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5