MakeItFrom.com
Menu (ESC)

EN 1.4460 Stainless Steel vs. EN 1.4826 Stainless Steel

Both EN 1.4460 stainless steel and EN 1.4826 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4460 stainless steel and the bottom bar is EN 1.4826 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220
150
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
9.1
Fatigue Strength, MPa 330
140
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Tensile Strength: Ultimate (UTS), MPa 750
500
Tensile Strength: Yield (Proof), MPa 510
260

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Corrosion, °C 450
430
Maximum Temperature: Mechanical, °C 1100
950
Melting Completion (Liquidus), °C 1430
1400
Melting Onset (Solidus), °C 1390
1360
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
17
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.4
3.3
Embodied Energy, MJ/kg 48
47
Embodied Water, L/kg 180
160

Common Calculations

PREN (Pitting Resistance) 34
23
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
39
Resilience: Unit (Modulus of Resilience), kJ/m3 640
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
18
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.0
3.7
Thermal Shock Resistance, points 20
11

Alloy Composition

Carbon (C), % 0 to 0.050
0.3 to 0.5
Chromium (Cr), % 25 to 28
21 to 23
Iron (Fe), % 60.2 to 69.2
60.4 to 68.7
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.3 to 2.0
0 to 0.5
Nickel (Ni), % 4.5 to 6.5
9.0 to 11
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
1.0 to 2.5
Sulfur (S), % 0 to 0.015
0 to 0.030