MakeItFrom.com
Menu (ESC)

EN 1.4477 Stainless Steel vs. 2218 Aluminum

EN 1.4477 stainless steel belongs to the iron alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4477 stainless steel and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
95 to 110
Elastic (Young's, Tensile) Modulus, GPa 210
73
Elongation at Break, % 22 to 23
6.8 to 10
Fatigue Strength, MPa 420 to 490
110
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 550 to 580
210 to 250
Tensile Strength: Ultimate (UTS), MPa 880 to 930
330 to 430
Tensile Strength: Yield (Proof), MPa 620 to 730
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 13
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 20
11
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 3.7
8.2
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 190
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 940 to 1290
450 to 650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 31 to 33
30 to 39
Strength to Weight: Bending, points 26 to 27
34 to 41
Thermal Diffusivity, mm2/s 3.5
52
Thermal Shock Resistance, points 23 to 25
15 to 19

Alloy Composition

Aluminum (Al), % 0
88.8 to 93.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 28 to 30
0 to 0.1
Copper (Cu), % 0 to 0.8
3.5 to 4.5
Iron (Fe), % 56.6 to 63.6
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0.8 to 1.5
0 to 0.2
Molybdenum (Mo), % 1.5 to 2.6
0
Nickel (Ni), % 5.8 to 7.5
1.7 to 2.3
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0 to 0.9
Sulfur (S), % 0 to 0.015
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15