MakeItFrom.com
Menu (ESC)

EN 1.4507 Stainless Steel vs. EN 1.4878 Stainless Steel

Both EN 1.4507 stainless steel and EN 1.4878 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4507 stainless steel and the bottom bar is EN 1.4878 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
45
Fatigue Strength, MPa 410
190
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 530
430
Tensile Strength: Ultimate (UTS), MPa 840
610
Tensile Strength: Yield (Proof), MPa 590
210

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
490
Maximum Temperature: Mechanical, °C 1100
850
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 21
16
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 4.0
3.2
Embodied Energy, MJ/kg 55
46
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 41
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
210
Resilience: Unit (Modulus of Resilience), kJ/m3 850
120
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 30
22
Strength to Weight: Bending, points 25
20
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 23
13

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 24 to 26
17 to 19
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 56.4 to 65.8
65 to 74
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.0 to 8.0
9.0 to 12
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0 to 0.8