MakeItFrom.com
Menu (ESC)

EN 1.4508 Stainless Steel vs. EN 1.0599 Steel

Both EN 1.4508 stainless steel and EN 1.0599 steel are iron alloys. They have 67% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4508 stainless steel and the bottom bar is EN 1.0599 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
20
Fatigue Strength, MPa 210
310
Impact Strength: V-Notched Charpy, J 90
27
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 570
620
Tensile Strength: Yield (Proof), MPa 260
440

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 20
2.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
1.8
Embodied Energy, MJ/kg 55
24
Embodied Water, L/kg 160
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
520
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 17
20

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0 to 0.030
0.16 to 0.22
Chromium (Cr), % 18 to 20
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 61.2 to 69.9
96.1 to 98.4
Manganese (Mn), % 0 to 1.5
1.3 to 1.7
Molybdenum (Mo), % 3.0 to 3.5
0 to 0.080
Nickel (Ni), % 9.0 to 12
0 to 0.4
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0.1 to 0.2
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.5
0.1 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0.080 to 0.15