MakeItFrom.com
Menu (ESC)

EN 1.4508 Stainless Steel vs. C16500 Copper

EN 1.4508 stainless steel belongs to the iron alloys classification, while C16500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4508 stainless steel and the bottom bar is C16500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
1.5 to 53
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Tensile Strength: Ultimate (UTS), MPa 570
280 to 530
Tensile Strength: Yield (Proof), MPa 260
97 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1000
340
Melting Completion (Liquidus), °C 1450
1070
Melting Onset (Solidus), °C 1400
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
250
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
60
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
61

Otherwise Unclassified Properties

Base Metal Price, % relative 20
31
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.0
2.6
Embodied Energy, MJ/kg 55
42
Embodied Water, L/kg 160
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
7.8 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 170
41 to 1160
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
8.6 to 17
Strength to Weight: Bending, points 19
11 to 16
Thermal Diffusivity, mm2/s 4.1
74
Thermal Shock Resistance, points 17
9.8 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Cadmium (Cd), % 0
0.6 to 1.0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
97.8 to 98.9
Iron (Fe), % 61.2 to 69.9
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 9.0 to 12
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 0.7
Residuals, % 0
0 to 0.5