MakeItFrom.com
Menu (ESC)

EN 1.4508 Stainless Steel vs. C84200 Brass

EN 1.4508 stainless steel belongs to the iron alloys classification, while C84200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4508 stainless steel and the bottom bar is C84200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
15
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 570
250
Tensile Strength: Yield (Proof), MPa 260
120

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1000
150
Melting Completion (Liquidus), °C 1450
990
Melting Onset (Solidus), °C 1400
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
72
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
17

Otherwise Unclassified Properties

Base Metal Price, % relative 20
30
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 4.0
3.1
Embodied Energy, MJ/kg 55
51
Embodied Water, L/kg 160
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
31
Resilience: Unit (Modulus of Resilience), kJ/m3 170
72
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
8.2
Strength to Weight: Bending, points 19
10
Thermal Diffusivity, mm2/s 4.1
23
Thermal Shock Resistance, points 17
9.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 18 to 20
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 61.2 to 69.9
0 to 0.4
Lead (Pb), % 0
2.0 to 3.0
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 9.0 to 12
0 to 0.8
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
10 to 16
Residuals, % 0
0 to 0.7