MakeItFrom.com
Menu (ESC)

EN 1.4509 Stainless Steel vs. N08367 Stainless Steel

Both EN 1.4509 stainless steel and N08367 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 65% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4509 stainless steel and the bottom bar is N08367 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 21
34
Fatigue Strength, MPa 170
280
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
80
Shear Strength, MPa 330
490
Tensile Strength: Ultimate (UTS), MPa 530
740
Tensile Strength: Yield (Proof), MPa 260
350

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 570
430
Maximum Temperature: Mechanical, °C 890
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 25
12
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
33
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 2.8
6.2
Embodied Energy, MJ/kg 41
84
Embodied Water, L/kg 120
200

Common Calculations

PREN (Pitting Resistance) 18
46
Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
210
Resilience: Unit (Modulus of Resilience), kJ/m3 180
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
25
Strength to Weight: Bending, points 19
22
Thermal Diffusivity, mm2/s 6.8
3.2
Thermal Shock Resistance, points 19
17

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 17.5 to 18.5
20 to 22
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 77.8 to 82.1
41.4 to 50.3
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0
23.5 to 25.5
Niobium (Nb), % 0.3 to 1.0
0
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.1 to 0.6
0