MakeItFrom.com
Menu (ESC)

EN 1.4510 Stainless Steel vs. EN 1.4736 Stainless Steel

Both EN 1.4510 stainless steel and EN 1.4736 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 98% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4510 stainless steel and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 26
28
Fatigue Strength, MPa 190
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 330
370
Tensile Strength: Ultimate (UTS), MPa 510
580
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 500
500
Maximum Temperature: Mechanical, °C 870
1000
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
490
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 8.5
9.0
Density, g/cm3 7.7
7.6
Embodied Carbon, kg CO2/kg material 2.2
2.4
Embodied Energy, MJ/kg 32
35
Embodied Water, L/kg 120
140

Common Calculations

PREN (Pitting Resistance) 17
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
140
Resilience: Unit (Modulus of Resilience), kJ/m3 180
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 6.7
5.6
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
1.7 to 2.1
Carbon (C), % 0 to 0.050
0 to 0.040
Chromium (Cr), % 16 to 18
17 to 18
Iron (Fe), % 79.1 to 83.9
77 to 81.1
Manganese (Mn), % 0 to 1.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.15 to 0.8
0.2 to 0.8