MakeItFrom.com
Menu (ESC)

EN 1.4515 Stainless Steel vs. EN 1.6958 Steel

Both EN 1.4515 stainless steel and EN 1.6958 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4515 stainless steel and the bottom bar is EN 1.6958 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
16
Fatigue Strength, MPa 380
700
Impact Strength: V-Notched Charpy, J 67
63
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
73
Tensile Strength: Ultimate (UTS), MPa 730
1140
Tensile Strength: Yield (Proof), MPa 550
1070

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
450
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
47
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.8
2.0
Embodied Energy, MJ/kg 53
27
Embodied Water, L/kg 180
60

Common Calculations

PREN (Pitting Resistance) 38
2.9
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
180
Resilience: Unit (Modulus of Resilience), kJ/m3 730
3050
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 26
40
Strength to Weight: Bending, points 23
31
Thermal Diffusivity, mm2/s 4.3
13
Thermal Shock Resistance, points 20
39

Alloy Composition

Aluminum (Al), % 0
0.0050 to 0.050
Carbon (C), % 0 to 0.030
0.25 to 0.3
Chromium (Cr), % 24.5 to 26.5
1.2 to 1.7
Copper (Cu), % 0.8 to 1.3
0
Iron (Fe), % 58.4 to 66.6
92.6 to 94.5
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 2.5 to 3.5
0.35 to 0.55
Nickel (Ni), % 5.5 to 7.0
3.3 to 3.8
Nitrogen (N), % 0.12 to 0.25
0
Phosphorus (P), % 0 to 0.030
0 to 0.020
Silicon (Si), % 0 to 1.0
0.15 to 0.3
Sulfur (S), % 0 to 0.020
0 to 0.015
Vanadium (V), % 0
0 to 0.12