MakeItFrom.com
Menu (ESC)

EN 1.4525 Stainless Steel vs. EN AC-45000 Aluminum

EN 1.4525 stainless steel belongs to the iron alloys classification, while EN AC-45000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4525 stainless steel and the bottom bar is EN AC-45000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 5.6 to 13
1.1
Fatigue Strength, MPa 480 to 540
75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 1030 to 1250
180
Tensile Strength: Yield (Proof), MPa 840 to 1120
110

Thermal Properties

Latent Heat of Fusion, J/g 280
470
Maximum Temperature: Mechanical, °C 860
180
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
520
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 18
120
Thermal Expansion, µm/m-K 11
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
81

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.8
7.7
Embodied Energy, MJ/kg 39
140
Embodied Water, L/kg 130
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 130
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 1820 to 3230
80
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 36 to 45
17
Strength to Weight: Bending, points 29 to 33
24
Thermal Diffusivity, mm2/s 4.7
47
Thermal Shock Resistance, points 34 to 41
8.0

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
82.2 to 91.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 15 to 17
0 to 0.15
Copper (Cu), % 2.5 to 4.0
3.0 to 5.0
Iron (Fe), % 70.4 to 79
0 to 1.0
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 0
0 to 0.55
Manganese (Mn), % 0 to 1.0
0.2 to 0.65
Molybdenum (Mo), % 0 to 0.8
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.45
Niobium (Nb), % 0 to 0.35
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
5.0 to 7.0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 2.0
Residuals, % 0
0 to 0.35