MakeItFrom.com
Menu (ESC)

EN 1.4560 Stainless Steel vs. S64512 Stainless Steel

Both EN 1.4560 stainless steel and S64512 stainless steel are iron alloys. They have 84% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4560 stainless steel and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 50
17
Fatigue Strength, MPa 190
540
Impact Strength: V-Notched Charpy, J 91
47
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
76
Shear Strength, MPa 390
700
Tensile Strength: Ultimate (UTS), MPa 550
1140
Tensile Strength: Yield (Proof), MPa 190
890

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 420
390
Maximum Temperature: Mechanical, °C 940
750
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 15
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.3
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
180
Resilience: Unit (Modulus of Resilience), kJ/m3 92
2020
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 20
40
Strength to Weight: Bending, points 19
31
Thermal Diffusivity, mm2/s 4.0
7.5
Thermal Shock Resistance, points 12
42

Alloy Composition

Carbon (C), % 0 to 0.035
0.080 to 0.15
Chromium (Cr), % 18 to 19
11 to 12.5
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 66.8 to 71
80.6 to 84.7
Manganese (Mn), % 1.5 to 2.0
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 8.0 to 9.0
2.0 to 3.0
Nitrogen (N), % 0 to 0.1
0.010 to 0.050
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.015
0 to 0.025
Vanadium (V), % 0
0.25 to 0.4