MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. Grade 29 Titanium

EN 1.4567 stainless steel belongs to the iron alloys classification, while grade 29 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is grade 29 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 22 to 51
6.8 to 11
Fatigue Strength, MPa 190 to 260
460 to 510
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Shear Strength, MPa 390 to 490
550 to 560
Tensile Strength: Ultimate (UTS), MPa 550 to 780
930 to 940
Tensile Strength: Yield (Proof), MPa 200 to 390
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 930
340
Melting Completion (Liquidus), °C 1410
1610
Melting Onset (Solidus), °C 1370
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 11
7.3
Thermal Expansion, µm/m-K 17
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.1
39
Embodied Energy, MJ/kg 43
640
Embodied Water, L/kg 150
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
62 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
3420 to 3540
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19 to 27
58 to 59
Strength to Weight: Bending, points 19 to 24
47 to 48
Thermal Diffusivity, mm2/s 3.0
2.9
Thermal Shock Resistance, points 12 to 17
68 to 69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.040
0 to 0.080
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 3.0 to 4.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63.3 to 71.5
0 to 0.25
Manganese (Mn), % 0 to 2.0
0
Nickel (Ni), % 8.5 to 10.5
0
Nitrogen (N), % 0 to 0.1
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.045
0
Ruthenium (Ru), % 0
0.080 to 0.14
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
88 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4