MakeItFrom.com
Menu (ESC)

EN 1.4567 Stainless Steel vs. S41003 Stainless Steel

Both EN 1.4567 stainless steel and S41003 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4567 stainless steel and the bottom bar is S41003 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 240
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 22 to 51
21
Fatigue Strength, MPa 190 to 260
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 390 to 490
320
Tensile Strength: Ultimate (UTS), MPa 550 to 780
520
Tensile Strength: Yield (Proof), MPa 200 to 390
310

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 420
390
Maximum Temperature: Mechanical, °C 930
720
Melting Completion (Liquidus), °C 1410
1440
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 11
27
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.9
Embodied Energy, MJ/kg 43
27
Embodied Water, L/kg 150
97

Common Calculations

PREN (Pitting Resistance) 19
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
92
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 400
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19 to 27
19
Strength to Weight: Bending, points 19 to 24
18
Thermal Diffusivity, mm2/s 3.0
7.2
Thermal Shock Resistance, points 12 to 17
19

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 17 to 19
10.5 to 12.5
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 63.3 to 71.5
83.4 to 89.5
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 8.5 to 10.5
0 to 1.5
Nitrogen (N), % 0 to 0.1
0 to 0.030
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030