MakeItFrom.com
Menu (ESC)

EN 1.4592 Stainless Steel vs. C38500 Bronze

EN 1.4592 stainless steel belongs to the iron alloys classification, while C38500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4592 stainless steel and the bottom bar is C38500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 23
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 82
37
Shear Strength, MPa 400
230
Tensile Strength: Ultimate (UTS), MPa 630
370
Tensile Strength: Yield (Proof), MPa 500
130

Thermal Properties

Latent Heat of Fusion, J/g 310
160
Maximum Temperature: Mechanical, °C 1100
110
Melting Completion (Liquidus), °C 1460
890
Melting Onset (Solidus), °C 1410
880
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
28
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
31

Otherwise Unclassified Properties

Base Metal Price, % relative 18
22
Density, g/cm3 7.7
8.1
Embodied Carbon, kg CO2/kg material 3.8
2.6
Embodied Energy, MJ/kg 52
45
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
48
Resilience: Unit (Modulus of Resilience), kJ/m3 610
78
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 23
13
Strength to Weight: Bending, points 21
14
Thermal Diffusivity, mm2/s 4.6
40
Thermal Shock Resistance, points 20
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.025
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0
55 to 59
Iron (Fe), % 62.6 to 68.4
0 to 0.35
Lead (Pb), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 3.5 to 4.5
0
Nitrogen (N), % 0 to 0.045
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0.15 to 0.8
0
Zinc (Zn), % 0
36.7 to 42.5
Residuals, % 0
0 to 0.5