MakeItFrom.com
Menu (ESC)

EN 1.4597 Stainless Steel vs. C90500 Gun Metal

EN 1.4597 stainless steel belongs to the iron alloys classification, while C90500 gun metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4597 stainless steel and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 45
20
Fatigue Strength, MPa 300
90
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 680
320
Tensile Strength: Yield (Proof), MPa 330
160

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 860
170
Melting Completion (Liquidus), °C 1400
1000
Melting Onset (Solidus), °C 1350
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 15
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
11

Otherwise Unclassified Properties

Base Metal Price, % relative 11
35
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.5
3.6
Embodied Energy, MJ/kg 36
59
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
54
Resilience: Unit (Modulus of Resilience), kJ/m3 280
110
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 25
10
Strength to Weight: Bending, points 22
12
Thermal Diffusivity, mm2/s 4.1
23
Thermal Shock Resistance, points 15
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 15 to 18
0
Copper (Cu), % 2.0 to 3.5
86 to 89
Iron (Fe), % 63 to 76.4
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 6.5 to 9.0
0
Molybdenum (Mo), % 0 to 1.0
0
Nickel (Ni), % 0 to 3.0
0 to 1.0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 2.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3