MakeItFrom.com
Menu (ESC)

EN 1.4600 Stainless Steel vs. EN 1.4713 Stainless Steel

Both EN 1.4600 stainless steel and EN 1.4713 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 93% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4600 stainless steel and the bottom bar is EN 1.4713 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
20
Fatigue Strength, MPa 290
160
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 360
320
Tensile Strength: Ultimate (UTS), MPa 580
520
Tensile Strength: Yield (Proof), MPa 430
250

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Corrosion, °C 420
370
Maximum Temperature: Mechanical, °C 730
800
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 27
23
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
4.6
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.0
1.7
Embodied Energy, MJ/kg 28
24
Embodied Water, L/kg 100
84

Common Calculations

PREN (Pitting Resistance) 12
7.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
84
Resilience: Unit (Modulus of Resilience), kJ/m3 470
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 7.3
6.2
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.0
Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 11 to 13
6.0 to 8.0
Iron (Fe), % 82 to 87.7
88.8 to 93
Manganese (Mn), % 1.0 to 2.5
0 to 1.0
Nickel (Ni), % 0.3 to 1.0
0
Nitrogen (N), % 0 to 0.025
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0.5 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.35
0