MakeItFrom.com
Menu (ESC)

EN 1.4618 Stainless Steel vs. Titanium 15-3-3-3

EN 1.4618 stainless steel belongs to the iron alloys classification, while titanium 15-3-3-3 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4618 stainless steel and the bottom bar is titanium 15-3-3-3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 51
5.7 to 8.0
Fatigue Strength, MPa 240 to 250
610 to 710
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
39
Shear Strength, MPa 480 to 500
660 to 810
Tensile Strength: Ultimate (UTS), MPa 680 to 700
1120 to 1390
Tensile Strength: Yield (Proof), MPa 250 to 260
1100 to 1340

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 900
430
Melting Completion (Liquidus), °C 1400
1620
Melting Onset (Solidus), °C 1360
1560
Specific Heat Capacity, J/kg-K 480
520
Thermal Conductivity, W/m-K 15
8.1
Thermal Expansion, µm/m-K 16
9.8

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
40
Density, g/cm3 7.7
4.8
Embodied Carbon, kg CO2/kg material 2.7
59
Embodied Energy, MJ/kg 39
950
Embodied Water, L/kg 150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270 to 280
78 to 89
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
32
Strength to Weight: Axial, points 24 to 25
64 to 80
Strength to Weight: Bending, points 22 to 23
50 to 57
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 15 to 16
79 to 98

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.1
0 to 0.050
Chromium (Cr), % 16.5 to 18.5
2.5 to 3.5
Copper (Cu), % 1.0 to 2.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.7 to 72.5
0 to 0.25
Manganese (Mn), % 5.5 to 9.5
0
Nickel (Ni), % 4.5 to 5.5
0
Nitrogen (N), % 0 to 0.15
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.070
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
2.5 to 3.5
Titanium (Ti), % 0
72.6 to 78.5
Vanadium (V), % 0
14 to 16
Residuals, % 0
0 to 0.4