MakeItFrom.com
Menu (ESC)

EN 1.4630 Stainless Steel vs. N08810 Stainless Steel

Both EN 1.4630 stainless steel and N08810 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 62% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4630 stainless steel and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
33
Fatigue Strength, MPa 170
160
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 300
340
Tensile Strength: Ultimate (UTS), MPa 480
520
Tensile Strength: Yield (Proof), MPa 250
200

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 520
490
Maximum Temperature: Mechanical, °C 800
1100
Melting Completion (Liquidus), °C 1440
1400
Melting Onset (Solidus), °C 1390
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 28
12
Thermal Expansion, µm/m-K 10
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.8
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 2.5
5.3
Embodied Energy, MJ/kg 36
76
Embodied Water, L/kg 120
200

Common Calculations

PREN (Pitting Resistance) 15
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
140
Resilience: Unit (Modulus of Resilience), kJ/m3 160
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 18
18
Thermal Diffusivity, mm2/s 7.5
3.0
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0 to 1.5
0.15 to 0.6
Carbon (C), % 0 to 0.030
0.050 to 0.1
Chromium (Cr), % 13 to 16
19 to 23
Copper (Cu), % 0 to 0.5
0 to 0.75
Iron (Fe), % 77.1 to 86.7
39.5 to 50.7
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
30 to 35
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.050
0 to 0.045
Silicon (Si), % 0.2 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.015
Titanium (Ti), % 0.15 to 0.8
0.15 to 0.6