MakeItFrom.com
Menu (ESC)

EN 1.4634 Stainless Steel vs. C94100 Bronze

EN 1.4634 stainless steel belongs to the iron alloys classification, while C94100 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4634 stainless steel and the bottom bar is C94100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
92
Elongation at Break, % 21
7.8
Poisson's Ratio 0.28
0.36
Shear Modulus, GPa 77
34
Tensile Strength: Ultimate (UTS), MPa 540
190
Tensile Strength: Yield (Proof), MPa 280
130

Thermal Properties

Latent Heat of Fusion, J/g 290
160
Maximum Temperature: Mechanical, °C 900
130
Melting Completion (Liquidus), °C 1430
870
Melting Onset (Solidus), °C 1390
790
Specific Heat Capacity, J/kg-K 480
330
Thermal Expansion, µm/m-K 10
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.7
9.2
Embodied Carbon, kg CO2/kg material 2.9
3.0
Embodied Energy, MJ/kg 42
48
Embodied Water, L/kg 140
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
14
Resilience: Unit (Modulus of Resilience), kJ/m3 200
97
Stiffness to Weight: Axial, points 14
5.5
Stiffness to Weight: Bending, points 25
16
Strength to Weight: Axial, points 20
5.8
Strength to Weight: Bending, points 19
8.1
Thermal Shock Resistance, points 19
7.6

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.2 to 1.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 18.5
0
Copper (Cu), % 0 to 0.5
72 to 79
Iron (Fe), % 74.9 to 81.8
0 to 0.25
Lead (Pb), % 0
18 to 22
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Niobium (Nb), % 0.3 to 1.0
0
Phosphorus (P), % 0 to 0.050
0 to 1.5
Silicon (Si), % 0.2 to 1.5
0 to 0.0050
Sulfur (S), % 0 to 0.050
0 to 0.080
Tin (Sn), % 0
4.5 to 6.5
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 1.3