MakeItFrom.com
Menu (ESC)

EN 1.4634 Stainless Steel vs. R30075 Cobalt

EN 1.4634 stainless steel belongs to the iron alloys classification, while R30075 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4634 stainless steel and the bottom bar is R30075 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210 to 250
Elongation at Break, % 21
12
Fatigue Strength, MPa 180
250 to 840
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
82 to 98
Tensile Strength: Ultimate (UTS), MPa 540
780 to 1280
Tensile Strength: Yield (Proof), MPa 280
480 to 840

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Melting Completion (Liquidus), °C 1430
1360
Melting Onset (Solidus), °C 1390
1290
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 21
13
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
2.1

Otherwise Unclassified Properties

Density, g/cm3 7.7
8.4
Embodied Carbon, kg CO2/kg material 2.9
8.1
Embodied Energy, MJ/kg 42
110
Embodied Water, L/kg 140
530

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
84 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 200
560 to 1410
Stiffness to Weight: Axial, points 14
14 to 17
Stiffness to Weight: Bending, points 25
24 to 25
Strength to Weight: Axial, points 20
26 to 42
Strength to Weight: Bending, points 19
22 to 31
Thermal Diffusivity, mm2/s 5.8
3.5
Thermal Shock Resistance, points 19
21 to 29

Alloy Composition

Aluminum (Al), % 0.2 to 1.5
0 to 0.1
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0 to 0.35
Chromium (Cr), % 17.5 to 18.5
27 to 30
Cobalt (Co), % 0
58.7 to 68
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 74.9 to 81.8
0 to 0.75
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.5
5.0 to 7.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0.3 to 1.0
0
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.050
0 to 0.020
Silicon (Si), % 0.2 to 1.5
0 to 1.0
Sulfur (S), % 0 to 0.050
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Tungsten (W), % 0
0 to 0.2