MakeItFrom.com
Menu (ESC)

EN 1.4640 Stainless Steel vs. 7108 Aluminum

EN 1.4640 stainless steel belongs to the iron alloys classification, while 7108 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4640 stainless steel and the bottom bar is 7108 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 51
11
Fatigue Strength, MPa 230 to 250
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 440 to 460
210
Tensile Strength: Ultimate (UTS), MPa 620 to 650
350
Tensile Strength: Yield (Proof), MPa 240 to 260
290

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 930
210
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1380
530
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
39
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.8
2.9
Embodied Carbon, kg CO2/kg material 2.8
8.3
Embodied Energy, MJ/kg 40
150
Embodied Water, L/kg 150
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250 to 260
38
Resilience: Unit (Modulus of Resilience), kJ/m3 150 to 170
620
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 22 to 23
34
Strength to Weight: Bending, points 21
38
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 14 to 15
16

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.7
Carbon (C), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
0
Copper (Cu), % 1.3 to 2.0
0 to 0.050
Iron (Fe), % 67.4 to 73.6
0 to 0.1
Magnesium (Mg), % 0
0.7 to 1.4
Manganese (Mn), % 1.5 to 4.0
0 to 0.050
Nickel (Ni), % 5.5 to 6.9
0
Nitrogen (N), % 0.030 to 0.11
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.5
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0
4.5 to 5.5
Zirconium (Zr), % 0
0.12 to 0.25
Residuals, % 0
0 to 0.15