EN 1.4655 Stainless Steel vs. EN 1.7230 Steel
Both EN 1.4655 stainless steel and EN 1.7230 steel are iron alloys. They have 71% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.
For each property being compared, the top bar is EN 1.4655 stainless steel and the bottom bar is EN 1.7230 steel.
Metric UnitsUS Customary Units
Mechanical Properties
| Elastic (Young's, Tensile) Modulus, GPa | 200 | |
| 190 |
| Elongation at Break, % | 23 to 25 | |
| 11 to 12 |
| Fatigue Strength, MPa | 320 | |
| 320 to 460 |
| Poisson's Ratio | 0.27 | |
| 0.29 |
| Shear Modulus, GPa | 78 | |
| 73 |
| Tensile Strength: Ultimate (UTS), MPa | 720 to 730 | |
| 720 to 910 |
| Tensile Strength: Yield (Proof), MPa | 450 to 480 | |
| 510 to 740 |
Thermal Properties
| Latent Heat of Fusion, J/g | 290 | |
| 250 |
| Maximum Temperature: Mechanical, °C | 1050 | |
| 420 |
| Melting Completion (Liquidus), °C | 1420 | |
| 1460 |
| Melting Onset (Solidus), °C | 1370 | |
| 1420 |
| Specific Heat Capacity, J/kg-K | 480 | |
| 470 |
| Thermal Conductivity, W/m-K | 15 | |
| 44 |
| Thermal Expansion, µm/m-K | 13 | |
| 13 |
Electrical Properties
| Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
| 7.3 |
| Electrical Conductivity: Equal Weight (Specific), % IACS | 2.5 | |
| 8.4 |
Otherwise Unclassified Properties
| Base Metal Price, % relative | 15 | |
| 2.4 |
| Density, g/cm3 | 7.7 | |
| 7.8 |
| Embodied Carbon, kg CO2/kg material | 2.9 | |
| 1.5 |
| Embodied Energy, MJ/kg | 41 | |
| 20 |
| Embodied Water, L/kg | 160 | |
| 51 |
Common Calculations
| Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 150 to 160 | |
| 79 to 97 |
| Resilience: Unit (Modulus of Resilience), kJ/m3 | 510 to 580 | |
| 700 to 1460 |
| Stiffness to Weight: Axial, points | 14 | |
| 13 |
| Stiffness to Weight: Bending, points | 25 | |
| 24 |
| Strength to Weight: Axial, points | 26 | |
| 26 to 32 |
| Strength to Weight: Bending, points | 23 | |
| 23 to 27 |
| Thermal Diffusivity, mm2/s | 4.0 | |
| 12 |
| Thermal Shock Resistance, points | 20 | |
| 21 to 27 |
Alloy Composition
| Carbon (C), % | 0 to 0.030 | |
| 0.3 to 0.37 |
| Chromium (Cr), % | 22 to 24 | |
| 0.8 to 1.2 |
| Copper (Cu), % | 1.0 to 3.0 | |
| 0 |
| Iron (Fe), % | 63.6 to 73.4 | |
| 96.7 to 98.3 |
| Manganese (Mn), % | 0 to 2.0 | |
| 0.5 to 0.8 |
| Molybdenum (Mo), % | 0.1 to 0.6 | |
| 0.15 to 0.3 |
| Nickel (Ni), % | 3.5 to 5.5 | |
| 0 |
| Nitrogen (N), % | 0.050 to 0.2 | |
| 0 |
| Phosphorus (P), % | 0 to 0.035 | |
| 0 to 0.025 |
| Silicon (Si), % | 0 to 1.0 | |
| 0 to 0.6 |
| Sulfur (S), % | 0 to 0.015 | |
| 0 to 0.030 |